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Introduction

e It is difficult to design a good neural network manually
o Requires much domain knowledge
o Model training and tuning is time consuming

e Neural Architecture Search(NAS)

o Aresearch automate design of deep learning models



Introduction

Weight sharing NAS

All involve training a supernet that incorporates many candidate subnetworks
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Introduction

e Weight sharing NAS

o Roughly classified into two categories
m Couple searching and training within one stage
m Decouple them into two stages, where the trained supernet is treated as an evaluator
for final searching



Introduction

e There are several fundamental issues about Weight sharing NAS
o Alarge gap between the accuracies of supernet and the accuracy by stand-alone training from
scratch
o How to build a good evaluator that neither overestimates nor underestimates subnetworks?
o  Why does the weight-sharing mechanism work, if under some conditions?



Introduction

e In this paper, attempt to answer the above three questions

e Present Fair Neural Architecture Search (FairNAS)
o Fairly train the supernet as an evaluator
o Turn narrows the accuracy gap



Introduction

e The contribution of Fair Neural Architecture Search (FairNAS)
o Prove it is due to unfair bias that the supernet misjudges submodels’ performance.
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o Prove it is due to unfair bias that the supernet misjudges submodels’ performance.
o Propose two levels of fairness constraints:
m Expectation Fairness (EF)
m Strict Fairness (SF)
m They are enforced to alleviate supernet bias and to boost evaluation capacity



Introduction

e The contribution of Fair Neural Architecture Search (FairNAS)

o Prove it is due to unfair bias that the supernet misjudges submodels’ performance.

o Propose two levels of fairness constraints:
m Expectation Fairness (EF)
m Strict Fairness (SF)
m They are enforced to alleviate supernet bias and to boost evaluation capacity

o Unveil the root cause of the validity of single-path supernet training under our fairness

perspective
m Different choice blocks of the same layer learn similar feature maps on the
corresponding channel
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Introduction

e The contribution of Fair Neural Architecture Search (FairNAS)
o Prove it is due to unfair bias that the supernet misjudges submodels’ performance.
o Propose two levels of fairness constraints:
m Expectation Fairness (EF)
m Strict Fairness (SF)
m They are enforced to alleviate supernet bias and to boost evaluation capacity
o Unveil the root cause of the validity of single-path supernet training under our fairness
perspective
m Different choice blocks of the same layer learn similar feature maps on the
corresponding channel
o Incorporate fair supernet with an EA-based multi-objective searching framework
m  Obtain three state-of-the-art networks achieved 75.34% top-1 validation accuracy.
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Fairness Taxonomy of Weight-sharing NAS

e To remove the training difference between a supernet and its submodels
o We scheme an equality principle on training modality
e Equality Principle
Training a supernet satisfies the Equality Principle if and only if it is in the same way

how a submodel is trained.
o Asupernet that consists of L layers, each with 7T choice blocks
o The weights are updated for T times in total.
o  The training process is P(m, n, L)

(@)
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Fairness Taxonomy of Weight-sharing NAS

e The Expectation Fairness
o Guarantee all choices blocks have equal expectations after n steps

o ForP(m,n,L). E(Y;,) = E(Y},) =...= E(Y,)

m LetY] be the number of times that the outcome lz- is updated over n trials
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Fairness Taxonomy of Weight-sharing NAS

e Is Uniform Sampling Fair Enough?

Check previous Single-Path which uses uniform sampling

Selecting a block from layer l is subject to the categorical distribution
Each basic event occurs with an equal probability p(X = I;) = =

m
For T steps, the expectation and variance of )‘/li can be written as :

O O O O

E(Y,)=nx*xp, =n/m

n(m—1)

Var(Y,) =nx*p,(1 —py,) =

m
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Fairness Taxonomy of Weight-sharing NAS

e Is Uniform Sampling Fair Enough?
o Uniform sampling meets Expectation Fairness
o However, Expectation Fairness is not enough
o For example,
m Randomly sample each model and keep it training for k times, then switch to another

16



Fairness Taxonomy of Weight-sharing NAS

e Is Uniform Sampling Fair Enough?
o Even with uniform sampling where k = 1, there is a latent ordering issue
o For example,
m For a sequence of choices (Ml, M, My ) it implies an inherent training order

e ltimplies an inherent training order My — My — M3

17



Fairness Taxonomy of Weight-sharing NAS

Is Uniform Sampling Fair Enough?

®
o For P(m,n,L)
If we adopt uniform sampling, as Tv goes infinite, it is impossible for 111 choices to be

|
sampled for an exactly equal number of times

Lemma 1. Regarding P(m,n,L), VY n € {z : z%m =
0,z €Ny}, lim p(Yi =Yz =..=Yim)=0.
n—-+oo
Prook. Let fUainl= oY = Yo = ws: = Yo
n n o ] n! 1
f(m’n> — Cn Cn(":n_l) C% e = (%l)m o (a)
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Fairness Taxonomy of Weight-sharing NAS

e Is Uniform Sampling Fair Enough?
o For P(m,n, L)
m If we adopt uniform sampling, as T goes infinite, it is impossible for 777 choices to be
sampled for an exactly equal number of times

: , n!
. 2mn(2)"
= M

n——+o00 Qﬂ-%m(%)n
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Fairness Taxonomy of Weight-sharing NAS

e Is Uniform Sampling Fair Enough?

o For P(m,n,L)
m If we adopt uniform sampling, as 71 goes infinite, it is impossible for 171 choices to be

sampled for an exactly equal number of times
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Fairness Taxonomy of Weight-sharing NAS

e A Meticulous Overhaul: Strict Fairness
o Ensures the parameter of every choice block be updated the same amount of times at

any stage
o Called strict fairness
m PV, =Y, =..=Y)=1holds at any time

m |t seems subtle but it will be later proved to be crucial

Definition 3. Strict Fairness. Regarding P(m, n, L), ¥V n
e{r:afm=0xeN.}, Y, =Y, = ..=Y,_ holds
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Fairness Taxonomy of Weight-sharing NAS

e A Fairness Taxonomy

| NAS Methods [ M [C: [ Cs |EF]SF|
SMASH [?] SN | - : X X
One-Shot [2] SN | 16f 33 | X X
DARTS [15] SN | 4t 0 X X
FBNet [33] SP | 20 0 X X
ProxylessNAS [4] TP 15 0 X X
Single Path One-Shot [7] | SP 12 <1 v X
Single-Path NAS [27] SP | 125t | 0 | X
FairNAS (Ours) SP 10 2 v v

Table 1. Comparison of state-of-the-art weight-sharing NAS meth-
ods as per cost and fairness basis. M : Memory cost at a single path
(SP), two paths (TP), and a whole supernet (SN). C, Cs: train and
search cost measured in GPU days. EF: Expectation Fairness, SF:
Strict Fairness. : searched on CIFAR-10, *: TPU.

[3] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. SMASH: One-Shot Model Architecture Search through HyperNetworks. In International Conference on Learning Representations, 2018. 1, 2, 4,7

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding and Simplifying One-Shot Architecture Search. In International Conference on Machine Learning, pages 549-558, 2018. 1, 2, 3, 4,6, 7

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture Search. In International Conference on Learning Representations, 2019. 1,2, 3,4, 5,6

[33] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. 1, 4, 6

[4] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware. In International Conference on Learning Representations, 2019. 1, 3,4, 5,6

[7] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single Path One-Shot Neural Architecture Search with Uniform Sampling. arXiv preprint. arXiv:1904.00420, 2019. 1, 2, 3,4, 5,6, 7, 8, 11

[27] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Marculescu. Single-Path NAS: Designing HardwareEfficient ConvNets in less than 4 Hours. arXiv preprint. arXiv:1904.02877, 2019. 1, 4, 6
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Fair Neural Architecture Search

e Following One-shot method, use the supernet to evaluate the performance of

a multitude of models
o Divide our fair neural architecture search into two stages:
m Training the supernet
m Searching for competitive models.
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Fair Neural Architecture Search

e Stage One: Supernet with Strict Fairness
o  Uniform sampling without replacement and sample 110 models at step 1
o Do not perform back-propagation and update parameters immediately for each model
m Define one supernet step as several backpropagation operations (BP) accompanied by
a single parameter update
m Gradients are then accumulated across the selected 77t models
e Supernet’s parameters get updated only when all 772 BPs are done.

25



Fair Neural Architecture Search

e Stage One: Supernet with Strict Fairness
o Define one supernet step as several backpropagation operations (BP) accompanied by a
single parameter update

. sample m models without replacement and train them sequentially or in parallel
¢ ostep t: e
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Fair Neural Architecture Search

e Strict Fairness Analysis
o Each choice block is activated only once during a parameter update step
m Y/ =Y =..=Y' =n/mholds
o Assures fairness at every step
E(Y/) = n/m
Var(Y/) =0
o The obvious difference lies in the variance

m For the previous approach with uniform sampling
e The variance spread along with n, which gradually increases the bias.
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Fair Neural Architecture Search

e Stage Two: Supernet as an Evaluator
o Utilize so-trained supernet to accurately evaluate each submodel’s performance
o Integrate MoreMNAS [5] by replacing its incomplete-training evaluator with fairly trained
supernet.
m  Speed-up in terms of GPU days by two orders of magnitudes
o Use Proximal Policy Optimization as the default reinforcing algorithm

[5] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Hailong Ma. ulti-Objective Reinforced Evolution in Mobile Neural Architecture Search. arXiv preprint. arXiv:1901.01074, 2019. 5, 11
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Experiments

e Search Space
o Adopt two types of search spaces

m  One for ranking analysis
e Designed based on MobileNetV2’s inverted bottleneck blocks
e The same amount of layers with standard MobileNetV2
e Kernels sizein (3, 5, 7)
e Expansion rates of (3, 6)

m The other for comparison with other NAS methods
e Use the same search space of 19 layers as ProxylessNAS[4]

[4] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware. In International Conference on Learning
Representations, 2019. 1, 3,4, 5,6
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Experiments

e Comparisons with State-of-the-art Methods
o Search Cost:12 GPU days

Methods X+ 2 Lat 751 U5
M) M) | (ms) | (%) (%)
MobileNetV2 [23] 300 [ 34 [ 78 [ 720 91.0
NASNet-A [35] 564 | 53 | 183 | 74.0 91.6
MnasNet [30] 317 | 42 | 76 | 74.0 91.8
MnasNet-92 [30] 388 | 39 | 92 | 7479 | 92.1
DARTS [15] 574 | 47 | - 73.3 91.3
FBNet-B [33] 295 | 45 | = 74.1 <
Proxyless-R [4] 3207 | 4.0 | 78 74.6 92.2
Proxyless GPU [4] 465t | 7.1 | 124 | 75.1 -
Single Path One-Shot [7] | 323 | 3.5 | - 74.4 91.0
Single-Path NAS [27] 365 | 43 | 79 | 7496 | 922
FairNAS-A (Ours) 388 | 46 | 104 | 7534 | 924
FairNAS-B (Ours) 345 | 45 | 90 | 7510 | 92.3
FairNAS-C (Ours) 321 | 44 | 83 | 7469 | 92.1

[23] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018

[38] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, volume 2, 2018. 1, 6

[30] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. MnasNet: Platform-Aware Neural Architecture Search for Mobile. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. 1, 6, 7

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture Search. In International Conference on Learning Representations, 2019. 1, 2, 3,4, 5, 6

[33] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019. 1, 4, 6

[4] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware. In International Conference on Learning Representations, 2019. 1, 3,4, 5, 6 31

[7] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single Path One-Shot Neural Architecture Search with Uniform Sampling. arXiv preprint. arXiv:1904.00420, 2019. 1, 2, 3,4, 5,6, 7, 8, 11

[27] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Marculescu. Single-Path NAS: Designing HardwareEfficient ConvNets in less than 4 Hours. arXiv preprint. arXiv:1904.02877, 2019. 1,4, 6



Experiments

Three models seem to agree with high expansion rates and large kernels at the tail end

Adopts lots of blocks with a small kernel 3 x 3

Comparisons with State-of-the-art Methods
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Experiments - Ablation Study

e Expectation Fairness vs. Strict Fairness
o EF k = 6, uniformly sampling one path and k times, followed by parameter update
o EFk=6,1/6lr, same as the first one except that the learning rate is scaled by%
o EF k =1, as Single-Path One-Shot [7]

60
——— FairNAS (SF)
—— SPOS (EF, k=1)
—— EF, 1/6lr,k =6

|/

0 20 40 60 80 100
Epochs

W
o
1

Accuracy

20

[7] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single Path One-Shot Neural Architecture Search with Uniform Sampling. arXiv preprint. arXiv:1904.00420, 2019. 1, 2, 3,4, 5,6, 7, 8, 11
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Experiments - Ablation Study

e Expectation Fairness vs. Strict Fairness
o The Supernet Accuracy gap

[ FairNAS (SF)

-l EEE SPOS (EF, k = 1)
€ 100 BN EF, 1/6lr,k =6
& BN EF, k=6

0

e
o

0.2 0.60 0.65 0.70

One-shot model accuracy
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Experiments - Ablation Study

e Relation Analysis
o FairNAS has higher relation

o 0.72
< ® ° ®
r .
8 0.70 £ €
= . ] A NTAQ
< .v oo ©° L P ® FairNAS
& ® SPOS
2 0.68 4 . . . :

0.62 0.64 0.66 0.68 0.70

One-shot model acc
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Experiments - Ablation Study

e Kendall Rank Analysis

o Kendall Tau (1 ) measures the ranking relation between one-shot models and fully trained ones
m Therange of Tis from -1 to 1, meaning the rankings are totally reversed or completely

preserved

e whereas 0 means there is no correlation at all

Methods Fairness | 7
One-Shot [2]7 None 0
Uniform (k = 6, baseline) | EF 0.4871
Uniform (k = 1, 1/6lr) EF 0.4871
SPOS [7] (k = 1)f EF 0.6153
FairNAS* SF 0.9487

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding and Simplifying One-Shot Architecture Search. In International Conference on Machine Learning, pages 549-558, 2018. 1, 2, 3,4, 6, 7
[7] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single Path One-Shot Neural Architecture Search with Uniform Sampling. arXiv preprint. arXiv:1904.00420, 2019. 1, 2, 3,4, 5,6, 7, 8, 11
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Experiments - Ablation Study

e Is recalibration for batch normalization a must?
o The statistics for Batch Normalization must be recalibrated in other approaches to boost their
model ranking performances
o Compare the ranking of FairNAS with and without this extra process
m Both have the same Kendall Tau (1)
o Evaluate the sampled architectures on the fly without the time consuming recalibration
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Why Does Single Path Training Work?

e The choice blocks of the first layer yield similar feature maps on the same
channel

Jr v b iy by be

0.8
0.6

0.4

0.0
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Why Does Single Path Training Work?

e The choice blocks of the first layer yield similar feature maps on the same
channel

Channel 0 Channel 3 Channel 6 Channel 9
0 I.Q 0 1.0 0 1.0 0 1.0
0.8 0.8 0.8 0.8
2 0.62 0.62 0.62 0.6
0.4 0.4 0.4 0.4
4 024 024 024 0.2
0.0 0.0 0.0 0.0

0 5 0 5 0 5 [}] 5

Channel 12 Channel 15 Channel 18 Channel 21
0 ol 10, 10, 1.0
0.8 0.8 0.8 0.8
2 0.62 062 0.62 0.6
0.4 0.4 0.4 0.4
4 024 024 024 0.2
0.0 0.0 0.0 0.0

0 5 0 5 0 5 0 5
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Why Does Single Path Training Work?

e The channel-wise feature maps generated by our supernet come with high
similarities.
o Important characteristic significantly stabilizes the whole training process
o Forlayer | -+ 1, its input are randomly from choice blocks in previous layer l
m The random sampling constructs a mechanism mimicking feature augmentation
e Boost the stable training of the supernet
m The augmentation doesn’t alter the feature distribution too much
e Therefore, recalibrating batch normalization is no longer required for evaluation

41
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Conclusion

e Scrutinize neural architecture search with a fairness perspective, especially
for weight-sharing approaches

e Prove that unfairness inevitably incurs a severely biased evaluation of
one-shot model performance

e Propose Strict Fairness to train supernet
o  Fair supernet can incorporated in any NAS pipeline

e The first to give a theoretical analysis of why single-path training is more
beneficial
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Progress Report

e Architecture searching is computationally expensive
o RL-based NAS require about 40K GPU hours
o  Weight Sharing based proposed to reduce search efforts
m Differentiable NAS
m  One-shot NAS

45



Progress Report

e Weight Sharing
o Differentiable NAS
m Learning architecture distribution by architecture parameter

m Integrated cross-entropy loss (for image classification) with the hardware constraint
(in terms of latency) to form the total loss.
m Previous Differentiable NAS need 216 GPU hours for a specific hardware constraint

e N different networks specific to N different constraints, 216xNGPU hours are still
needed for search

46



Progress Report

e Weight Sharing
o One-shot NAS
m Decouple model training from architecture search
m Finished training Supernet
e Sampled different sub-networks from supernet by the accuracy predictor or
evolutionary algorithm
m Evolutionary algorithm
e Need a lot of validation inference time to execute evolutionary algorithm
m Accuracy predictor
e Need 40 GPU hours to training accuracy predictor
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Progress Report

e Two problems in previous NAS
o High cost of supernet training
m Training a supernet still needs a lot of computation resource and search time.
o High cost of sub-network specialization
m  No matter DNAS or one-shot NAS,considerable time is needed to specialize
sub-networks from the supernet.

48



Progress Report

e Propose progressive one-shot neural architecture search(PONAS)

o Combines the advantages of progressive NAS and the one-shot method
o Search the best layer in the network progressively

Step 1 Step 2 Step N
1 2 5
2 3 : : | 4
(. .
2 5 2
1 ' ‘
Appérlt‘)));i'r‘nsane Bk]x-ek Blgck . Bloc
e 1 1 1
Blocks




Progress Report

e Progressive NAS
o Search the best structure of the cell is searched by progressively expanding blocks
(operations)
o Stack multiple best cells to form the final CNN

50



Progress Report

e Propose progressive one-shot neural architecture search(PONAS)
o Search the best layer in the network progressively
m The network constructed by the best block in each layer called startpoint network
o Record the validation accuracy of each candidate block to construct the candidate table

Step 1 Step 2 Step N
1 2 ¥
1 : | 2 L}
Block Block . .
X 2
1oy ' |
il 1 1 1
Blocks




Progress Report

e The main reason about the first problem

o Previos NAS encode entire search space into a supernet
o Itis hard to make supernet converge because of the complex structure of supernet

Supernet CNN




Progress Report

e To address the first problem, propose the two-stage training
o The first stage called Meta-training stage and the second stage called Fine-tuning stage

Meta training stages Fine-tune stages




Progress Report

In Meta-training stage

(@)
(@)

(@)

Construct the meta network which is the biggest network in search space
The main different between meta network and supernet

m Meta network is single path

m  Supernet is multiple path
It is more efficient to train meta network than entire supernet

Meta training stages

I‘I‘II.I‘I
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Progress Report

e In Fine-tune stage
o Construct the supernet inherited weight from meta network to all candidate blocks
o Fine-tune stage give a better initialization to all candidate blocks than random initialization
m This allow all candidate blocks only need few epoch to make all blocks converge

Meta-training Stage Fine-tune Stage

M-




Progress Report

e The main reason about the second problem
e Previous One-Shot NAS

o Flexibly support different hardware constraint and only training supernet once
o Based on evolutionary algorithm or a pre-trained accuracy predictor to sample specific
network
m Still need lots of validation inference time to train accuracy predictor or execute
evolutionary algorithm
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Progress Report

e Propose Once-for-all algorithm to incorporate with PONAS
o Does not need any time to specialize a specific network from startpoint network
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Progress Report

e Propose Once-for-all algorithm to incorporate with PONAS
o Inspired by the analysis of the similarities between different block in the same layer

m Make a hypothesis that the accuracy loss between the block can quantify importance of
the candidate blocks

o Visualize the max accuracy loss in each layer
m The layer expanded channel size has the more important than other layers
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Progress Report

e Once-for-all algorithm
o Choosing the block that minimize the accuracy loss from startpoint network while
under the hardware constraint

o  During Progressive One-Shot Neural Architecture

m Construct a candidate table which record the validation accuracy of each candidate
block in each layer

o After PONAS

m Constructed the startpoint network by the best block in each layer

59



Progress Report

e Once-for-all algorithm

Fine-tune stages Candidate table Startpoint network
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Progress Report

e Once-for-all algorithm

(@)

Algorithm 1 Once-for-all algorithm

Require: T,.,n4: candidate table; Net™: best network architecture; Cost: hardware

constraint;

1: initial Net = Net™;

2: while Cost(Net) > Cost do

3 Taifr = get_cand_dif f table(Tzana, Net);

4: Netnew = replace_minimize_accuracy-loss(Net, Ta;ifr);

5 Net = Netnew;

6: end while;

7: return Net;




Progress Report

e Result

‘ Search Search Search Search Deploy ) Top-1 Top-5
MGdel method space Dataset GPU hours GPU hours RHERIOES ace(%) acc(%)
MobileNetV2[16] manual - - - - 3.4 300 | 72.0 91.0
MobileNetV2(1.4X) | manual - - - - 6.9 585 | 747 925
ShuffleNetV2(1.5X)[22]| manual - - - - 3.5 299 | 72.6 -
PNASNet[10] SMBO  Cell CIFAR-10 5.1 588 | 74.2 919
DPP-Net-Panacea[11] | SMBO  Cell CIFAR-10 4.8 523 | 74.02 91.8
DARTS[12] gradient Cell CIFAR-10 4.7 574 | 73.3  91.3
MnasNet-A1[4] RL stage ImageNet 3.9 312 | 75.2 925
MnasNet-A2 RL stage ImageNet 4.8 340 75.6  92.7
ProxylessNAS-R[5] RL layer ImageNet 4.1 320 | 746 922
FBNet-A[6] gradient layer ImageNet 4.3 249 | 73.0 -
FBNet-B gradient layer ImageNet 4.5 295 74.1 -
FBNet-C gradient layer ImageNet 5.5 375 74.9 -
MobileNetV3-Large[23]| RL stage ImageNet 5.4 219 | 75.2 -
MobileNetV3-Small RL stage ImageNet 2.9 66 67.4 -
SinglePathNAS[7]  |One-Shot layer ImageNet - 328 | 74T -
OFA w/ PS[8] One-Shot layer ImageNet - 230 | 76.00 -
FairNas-A[13] RL layer ImageNet 4.6 388 | 75.34 92.38
FairNas-B RL layer ImageNet 4.5 345 | 75.10 92.30
FairNas-C RL layer ImageNet 4.4 321 | 74.69 92.12
Ours-A layer ImageNet 4.0 328 | 73.5  91.6
Ours-B layer ImageNet
Ours-C layer ImageNet
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