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Abstract

One of the most critical problems in neural architecture
search is evaluation, which ranks various candidate models.
Recently, there is a rapidly increasing interest in weight-
sharing approaches. Although being very efficient with or-
ders of magnitude faster than traditional methods, they are
prone to misjudgments of candidate architectures.

In this paper, we first prove in current one-shot weight-
sharing approaches, biased evaluation is inevitable due to
inherent unfairness. To rectify it, we propose two levels of
fairness constraints: expectation fairness and strict fair-
ness. Among several comparison groups, strict fairness
works best both theoretically and empirically. Incorpo-
rating our supernet trained under such a constraint with
a multi-objective evolutionary search algorithm, we ob-
tain three state-of-the-art models on ImageNet. Especially,
FairNAS-A attains 75.34% top-1 accuracy. Finally, we give
an in-depth analysis of the proposed method.

1. Introduction

The advent of neural architecture search (NAS) has
brought deep learning into an era of automation [37]. Abun-
dant efforts have been dedicated to searching within care-
fully designed search space [38, 21, 30, 17, 31]. Mean-
while, the evaluation of a network’s performance is an im-
portant building block for NAS. Conventional approaches
evaluate an enormous amount of models based on resource-
devouring training [38, 30]. Recent attention has been
drawn to improve its efficiency via parameter sharing [3,
15, 20, 33].

Generally speaking, the weight-sharing approaches all
involve training a supernet that incorporates many candi-
date subnetworks. They can be roughly classified into two
categories: those who couple searching and training within
one stage [20, 15, 4, 27, 33] and others who decouple them
into two stages, where the trained supernet is treated as an
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Figure 1. Supernet training on ImageNet. Top: The average top-
1 accuracies of one-shot models, with variances shown in shades.
Bottom: Histogram of validation accuracies from a stratified sam-
ple (960 each) of one-shot models. SF: Strict Fairness (proposed).
EF: Expectation Fairness (baseline, sampling one path and per-
form k iterations each step), SPOS [7] (a case of EF where k = 1).
All methods use the same lr except for EF 1/6lr (light blue).

evaluator for final searching [3, 2, 7, 18].
Despite being widely utilized due to searching efficiency,

weight sharing approaches are roughly built on empirical
experiments instead of solid theoretical ground. There are
several fundamental issues that remain to be addressed.
Namely, a) Why is there a large gap between the range
of supernet predicted accuracies and that of “ground-truth”
ones by stand-alone training from scratch [3, 2]? b) How
to build a good evaluator that neither overestimates nor un-
derestimates subnetworks? c) Why does the weight-sharing
mechanism work, if under some conditions?

In this paper, we attempt to answer the above three ques-
tions for two-stage weight-sharing approaches. We present
Fair Neural Architecture Search (FairNAS) to fairly train
the supernet (see Figure 1) as an evaluator, which in turn
narrows the accuracy gap. Our analysis and experiments
are conducted in a widely used search space [4, 33, 7, 27].
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Figure 2. Left: Feature maps activated from 6 blocks of the first layer in our supernet trained with strict fairness. Right: Cross-block
cosine similarity averaged on each channel. Each block learns very similar feature maps to others (all above 0.9).

The contributions can be summarized as follows.
Firstly, we prove it is due to unfair bias that the super-

net misjudges submodels’ performance. It is inevitable in
current one-shot approaches [3, 2, 7].

Secondly, we propose two levels of fairness constraints:
Expectation Fairness (EF) and Strict Fairness (SF). They
are enforced to alleviate supernet bias and to boost eval-
uation capacity. Both outperform the existing unfair ap-
proaches while SF delivers a state-of-the-art ranking (τ ) of
0.9487.

Thirdly, we unveil the root cause of the validity of
single-path supernet training under our fairness perspective.
That is, different choice blocks of the same layer learn sim-
ilar feature maps on the corresponding channel, according
to their high cosine similarity measure, see Figure 2.

Last but not the least, we incorporate the memory-
friendly fair supernet with an EA-based multi-objective
searching framework. We obtain three state-of-the-art net-
works within a single run at the cost of 12 GPU days, prox-
ylessly on ImageNet. Among them, FairNAS-A achieves
75.34% top-1 validation accuracy.

2. Fairness Taxonomy of Weight-sharing NAS

2.1. Review of Biased Supernets

On the one hand, supernet training and searching for
good models are nested. In ENAS [20], the sampling policy
π(m, θ) of an LSTM controller [8] and a sampled subnet-
work m are alternatively trained. The final models are sam-
pled again by the trained policy π, one who has the highest
reward on a mini-batch of validation data is finally chosen.
DARTS [15] combines the supernet training and searching
within a bi-level optimization where all operations are as-
sociated with a coefficient denoting its importance. Both
two methods treat all subnetworks unequally and introduce
gradually increasing biases through optimization. Those
who have better initial performance are more likely to be
sampled or to maintain higher coefficients, resulting in a
suboptimal or even worse solution. For instance, architec-
tures from DARTS usually contain an excessive number of
skip connections [34, 14], which damage the outcome per-

formance. Therefore, the prior-learning DARTS is biased
as per skip connections, while a random approach doesn’t
suffer [13]. DARTS overrated ‘bad’ models (jammed by
skip connections), meantime many other good candidates
are depreciated.

On the other hand, the rest one-shot methods consider
the trained supernet as a confident proxy, which we also
follow, to predict the real performance of all subnetworks
[3, 2, 7]. We emphasize that a reliable proxy supernet
should neither severely overestimate nor underestimate the
ground-truth performance of any model. The next searching
stage is decoupled from training and it can be implemented
with random sampling, evolutionary algorithms, and rein-
forcement learning.

SMASH [3] invents a hyper network (referred to as Hy-
perNet H) to generate the weights of a neural architecture
by its binary encoding. This HyperNet resembles a typical
supernet in that they can both produce weights for any ar-
chitecture in the search space. At each step, a model is ran-
domly sampled and trained based on the generated weights
fromH , and in turn, it updates the weights ofH . For a set of
randomly sampled models, a correlation between predicted
validation errors and ground-truth exists, but it has a large
discrepancy between the ranges (40%-90% vs. 25%-30%
on CIFAR-100 [12]).

One-Shot [2] involves a dynamic dropout rate for the su-
pernet, each time only a subset is optimized. Apart from
its training difficulty, there is also an evident performance
gap of submodels with inherited weights compared with
their ground-truth (30%-90% vs. 92%-94.5% on CIFAR-
10 [12]). SPOS [7] uniformly samples a single-path from
the supernet during the training so that all architectures can
be optimized simultaneously. However, we find it offers
limited fairness and its supernet performance is somewhat
restricted, see Figure 1.

Given the above biased supernets and the obvious range
disparity, we are motivated to revisit one-shot approach un-
der a novel fairness perspective.
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Figure 3. Our strict fairness sampling and training strategy for supernet. A supernet training step t consists of training m models, each on
one batch of data. The supernet gets its weight updated after accumulating gradients from each model. All operations are thus ensured to
be equally sampled and trained within every step t. There are (6!)18 choices per step in our experiments2.

2.2. Formal Formulation of Fairness

What kind of fairness can we think of? Will fairness help
to improve supernet performance and ranking ability? First
of all, to remove the training difference between a super-
net and its submodels, we scheme an equality principle on
training modality.

Definition 1. Equality Principle. Training a supernet sat-
isfies the Equality Principle if and only if it is in the same
way how a submodel is trained.

Only those who train a single path model at each step
meet this principle by its definition. On the contrary, other
methods like DARTS [15] train the supernet with all paths
altogether, One-Shot [2] dynamically drops out some paths,
and ProxylessNAS [4] uses two paths, directly violating the
principle.

Formally, we discuss fairness in a common supernet that
consists of L layers, each with several choice blocks. With-
out loss of generality, we suppose each layer has an equal
number of choices, say m. A model is generated by sam-
pling a block layer by layer. The weights are updated for
n times in total. Therefore, we can describe the training
process as P (m,n,L).

2.2.1 First Attempt: Expectation Fairness

In order to reduce the above mentioned bias in Section 2.1, a
natural way is to guarantee all choices blocks have equal
expectations after n steps. We define this basic require-
ment as expectation fairness in Definition 2.

Definition 2. Expectation Fairness. On the basis of Def-
inition 1, let Ω be the sampling space containing m basic
events {l1, l2, ..., lm}, which are generated by selecting a
block from layer l with m choice blocks. Let Yli be the
number of times that the outcome li is observed (updated)
over n trials.

2It can be calculated by (619 ∗519 ∗419 ∗319 ∗219 ∗1)/6! = (6!)18.

Then the expectation fairness is that for P (m,n,L),
E(Yl1) = E(Yl2) = ... = E(Ylm) holds, ∀l ∈ L.

2.2.2 Is Uniform Sampling Fair Enough?

Let us check a single-path routine [7] which uses uniform
sampling. As sampling on any layer l is independent of
others, we first consider the case P (m,n, l). Selecting a
block from layer l is subject to the categorical distribution.
In this case, each basic event occurs with an equal proba-
bility p(X = li) = 1

m . For n steps, the expectation and
variance of Yli can be written as,

E(Yli) = n ∗ pli = n/m

Var(Yli) = n ∗ pli(1− pli) =
n(m− 1)

m2

(1)

That’s to say, all choices share the same expectation and
variance. Consequently, uniform sampling meets Expec-
tation Fairness by Definition 2 and it seems superficially
fair for various choices. However, Expectation Fairness is
not enough. For example, we can randomly sample each
model and keep it training for k times, then switch to an-
other. This procedure also meets Definition 2, but it’s very
unstable to train, shown as EF (k = 6) in Figure 1.

Even in [7] with uniform sampling where k = 1, there is
a latent ordering issue. For a sequence of choices (M1,
M2, M3), it implies an inherent training order M1 →
M2 → M3. Since each model is usually trained by back-
propagation, the trained weights ofM1 are immediately up-
dated to the supernet and those of M2 are renewed next
while carrying the effect of the former update, so for M3.
A simple permutation of (M1, M2, M3) does comply with
Expectation Fairness but yields different results. Besides,
if the learning rate lr is changed within the sequence, the
situation becomes even more complicated.

Generally, for P (m,n,L) where m,n,L are positive
integers, assume the sampling times n can be divided by



m(m ≥ 2). If we adopt uniform sampling, as n goes infi-
nite, it is impossible for m choices to be sampled for an
exactly equal number of times. This is stated formally as
Lemma 1.

Lemma 1. Regarding P (m,n,L), ∀ n ∈ {x : x%m =
0, x ∈ N+}, lim

n→+∞
p(Yl1 = Yl2 = ... = Ylm) = 0.

Proof. Let f(m,n) = p(Yl1 = Yl2 = ... = Ylm).

f(m,n) = C
n
m
n C

n
m
n(m−1)

m

...C
n
m
n
m

1

mn
=

n!

( nm !)m
1

mn
(a)

Firstly, we prove the existence of limitation, f(n) strictly
decreases monotonically with n and f(n) ≥ 0, therefore, its
limitation exists.

Secondly, we calculate its limitation using equivalent in-
finity replacement based on Stirling’s approximation about
factorial [32].

lim
n→+∞

f(m,n) = lim
n→+∞

n!

( nm !)m ×mn

= lim
n→+∞

√
2πn(ne )n√

2π n
m

m
(ne )n

= lim
n→+∞

√
m

2πn
m

m−1
2

= 0

(b)

Q.E.D.

Lemma 1 is somewhat counter-intuitive and thereby ne-
glected in previous works. To throw light on this phe-
nomenon, we plot this probability curve in Figure 4. We
see that f(2, n) decreases below 0.2 when n ≥ 20. In most
cases, n ≥ 106, which suffers severely from this issue.
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Figure 4. The function curve of f(m,n) in Lemma 1. When sam-
pling uniformly from m blocks for n trials, the probability of hav-
ing an equal sampling number for each block quickly reaches zero.

2.2.3 A Meticulous Overhaul: Strict Fairness

Our insights come from the above overlooked phenomenon.
We propose a more rigorous requirement that ensures the
parameter of every choice block be updated the same
amount of times at any stage, which is called strict fair-
ness and formally as Definition 3.

NAS Methods M Ct Cs EF SF

SMASH [3] SN - - 7 7

One-Shot [2] SN 16‡ 3.3 7 7

DARTS [15] SN 4† 0 7 7
FBNet [33] SP 20 0 7 7
ProxylessNAS [4] TP 15 0 7 7
Single Path One-Shot [7] SP 12 <1 3 7

Single-Path NAS [27] SP 1.25‡ 0 3 7
FairNAS (Ours) SP 10 2 3 3

Table 1. Comparison of state-of-the-art weight-sharing NAS meth-
ods as per cost and fairness basis. M : Memory cost at a single path
(SP), two paths (TP), and a whole supernet (SN).Ct, Cs: train and
search cost measured in GPU days. EF: Expectation Fairness, SF:
Strict Fairness. †: searched on CIFAR-10, ‡: TPU.

Definition 3. Strict Fairness. Regarding P(m, n, L), ∀ n
∈ {x : x%m = 0, x ∈ N+} , Yl1 = Yl2 = ... = Ylm holds.

Definition 3 imposes a constraint more demanding than
Definition 2. That is, p(Yl1 = Yl2 = ... = Ylm) = 1 holds
at any time. It seems subtle but it will be later proved to be
crucial. Nevertheless, we have to be aware this is not ulti-
mate fairness since different models have their own optimal
initialization process and hyperparameters, which we single
them out for simplicity.

2.2.4 A Fairness Taxonomy

As a summary, we compare current weight-sharing NAS
methods based on the previous discussion in Table 1. Only
single-path methods [27, 7] satisfy Expectation Fairness,
while the rest doesn’t. Next, we build our method FairNAS
to meet both Expectation Fairness and Strict Fairness.

3. Fair Neural Architecture Search
Following One-Shot [2] and Single-Path One-Shot [7],

we use the supernet to evaluate the performance of a mul-
titude of models in our search space. Hence we can divide
our fair neural architecture search into two stages: training
the supernet and searching for competitive models.

3.1. Stage One: Supernet with Strict Fairness

We first propose a fair sampling and training algorithm
to strictly abide by Defintion 3, see Algorithm 1. We use
uniform sampling without replacement and sample m mod-
els at step t so that each choice block must be activated and
updated only once, depicted by Figure 3.

To reduce the bias from different training orders, we
don’t perform back-propagation and update parameters im-
mediately for each model as in the previous works [2, 7].
Instead, we define one supernet step as several back-
propagation operations (BP) accompanied by a single pa-
rameter update. In particular, given a mini-batch of train-
ing data, each of m one-shot model is trained with back-



Algorithm 1 : Stage 1 - Fair Supernet Training.
Input: training steps n, search space S(m,L), m× L su-
pernet parameters Θ(m,L), search layer depth L, choice
blocks m per layer, training epochs N , training data
loader D, loss function Loss
initialize every θj,l in Θ(m,L).
for i = 1 to N do

for data, labels in D do
for l = 1 to L do
cl = an uniform index permutation for the choices
of layer l

end for
Clear gradients recorder for all parameters
∇θj,l = 0, j = 1, 2, ...,m, l = 1, 2, ..., L
for k = 1 to m do

Build modelk = (c1k , c2k , .., cLk
) from sampled

index
Calculate gradients for modelk based on Loss,
data, labels.
Accumulate gradients for activated parameters,
∇θc1k ,1,∇θc2k ,2, ...,∇θcLk

,L

end for
update θ(m,L) by accumulated gradients.

end for
end for

propagation. Gradients are then accumulated across the se-
lectedmmodels but supernet’s parameters get updated only
when all m BPs are done. Algorithm 1 also doesn’t suffer
from the ordering issue as each choice block is updated re-
gardless of external learning rate strategies.

Strict Fairness Analysis. We now check whether our
proposed Algorithm 1 satisfies Strict Fairness. By its de-
sign, each choice block is activated only once during a pa-
rameter update step. Thus Y ′l1 = Y ′l2 = ... = Y ′lm holds. In
particular, Y ′l1 = Y ′l2 = ... = Y ′lm = n/m holds3. Here, we
write its expectation and variance as follows:

E(Y ′li) = n/m

Var(Y ′li) = 0
(2)

Compared with Equation 1, the obvious difference lies in
the variance. For the single-path approach with uniform
sampling [7], the variance spread along with n, which grad-
ually increases the bias. However, our approach calibrates
this inclination and assures fairness at every step.

3.2. Stage Two: Supernet as an Evaluator

In stage two of searching, we utilize so-trained supernet
to accurately evaluate each submodel’s performance. It is

3Here we use n to represent the total number of BP operations to match
Equation 1.

importance to notice that we differ from DARTS [15] as it
learns priors towards a promising candidate, while we sup-
press the prior for fair evaluation. As there are many other
requirements and objectives to achieve in real applications,
e.g., inference time, multiply-adds, and memory costs, etc.,
we naturally adopt a multi-objective solution.

Pi

Qi

F1

F2

F3

Tournament, crossover, mutation

Non-dominated sorting

Crowding distance sorting

Pi+1

… …

Supernet Evaluate

accuracyθ

Figure 5. Evolutionary searching with the supernet trained with
strict fairness. In each generation, candidate models in the current
population inherit weights from the supernet for evaluation. Their
estimated accuracies are fed into the searching pipeline as one of
the objectives. The evolution loops till Pareto optimality.

Besides, the search space is too vast to enumerate all
models. We need an efficient approach to balance the explo-
ration and exploitation trade-off instead of a random sam-
pling strategy. Here we integrate MoreMNAS [5] by replac-
ing its incomplete-training evaluator with our fairly trained
supernet. By doing so, we achieve tremendous speed-up in
terms of GPU days by two orders of magnitudes. More-
over, we use Proximal Policy Optimization as the default
reinforcing algorithm [24]. The searching pipeline is de-
tailed in Algorithm 3 (supplementary) and shown in Fig-
ure 5. Since our new approach is based on fair sampling
and training of the supernet, we name the whole framework
Fair Neural Architecture Search (FairNAS).

4. Experiments
4.1. Setups

Search Space. We adopt two types of search spaces,
one for ranking analysis and the other for comparison with
other NAS methods. (a) The search space for ranking anal-
ysis is designed based on MobileNetV2’s inverted bottle-
neck blocks as done in [4]. In particular, we retain the same
amount of layers with standard MobileNetV2 [23]. Con-
volution kernels are with the size in (3, 5, 7) and expansion
rates are of (3, 6). We keep the number of filters unchanged.
Besides, the squeeze-and-excitation block [9] is excluded.
In total, it has a size of 616. (b) To be on par with various
state-of-the-art methods, we use the same search space of
19 layers as ProxylessNAS [4], whose size spreads to 619.

Dataset. We perform all experiments on ImageNet [22]
and randomly select 50,000 images from the training set as
our validation set (50 samples from each class). The re-
maining training set is used as our training set, while the



original validation set is taken as the test set to measure the
final performance of each model.

Training Hyperparameters. For search space (a), we
train the supernet for 150 epochs using a batch size of 256
and adopt a stochastic gradient descent optimizer with a mo-
mentum of 0.9 [28] based on standard data augmentation as
[23]. A cosine learning rate decay strategy [16] is applied
with an initial learning rate of 0.045. Moreover, We regu-
larize the training with L2 weight decay (4 × 10−5). To be
consistent with the previous works, we don’t employ any
other tricks like dropout [26], cutout [6] or mixup [35], al-
though they can further improve the scores on the test set.
Our supernet is thus trained to fullness in 10 GPU days. Re-
garding the stand-alone training of sampled models, we use
the same hyperparameters of the supernet.

For search space (b), we follow the same strategy as
above for training the supernet, but we adopt vanilla data
processing as well as training tricks in [30] for stand-alone
models.

4.2. Comparisons with State-of-the-art Methods

Memory consumption and fairness classification of vari-
ous neural architecture search methods are reported in Table
1. It is worth to note we don’t require extra tactics for stabi-
lizing supernet or to prevent it from over-regularization, as
apposed to [2].

Our candidate models FairNAS-A,B,C are sampled from
our Pareto front (Section 3.2) with equal distance over
multiply-adds to meet different requirements. The result is
shown in Table 2. Although the latency is not considered as
one of our objectives, our models still outperform or parallel
with other methods in this regard.

We draw FairNAS models in Figure 7. FairNAS-A
hits a new state-of-the-art result 75.34% top-1 accuracy
for ImageNet classification, which surpasses MnasNet-92
(+0.55%) and Single-Path-NAS (+0.38%). FairNAS-B
matches Proxyless-GPU with much fewer parameters and
multiply-adds. Besides, it surpasses Proxyless-R Mobile
(+0.5%) with a comparable amount of multiply-adds.

Three models seem to agree with high expansion rates
and large kernels at the tail end, which enables full use of
high-level features. FairNAS-A tends to choose a small ex-
pansion rate operator at the first two stages to cut down the
computational cost, but it continues with a large expansion
rate in the following stages when the feature resolution has
been reduced. Unlike ProxylessNAS mobile, which prefers
to append a large kernel and expansion rate after a down-
sampling operation, it’s interesting to see that our FairNAS-
B instead appreciates a larger kernel. FairNAS-C adopts
lots of blocks with a small kernel 3 × 3, an expansion rate
of 3 to keep as lightweight as possible, and it selects large
kernels and expansion rates only at the tail to work with
high-level features.

Methods ×+ P Lat µ1 µ5
(M) (M) (ms) (%) (%)

MobileNetV2 [23] 300 3.4 78 72.0 91.0
NASNet-A [38] 564 5.3 183 74.0 91.6
MnasNet [30] 317 4.2 76 74.0 91.8
MnasNet-92 [30] 388 3.9 92 74.79 92.1
DARTS [15] 574 4.7 - 73.3 91.3
FBNet-B [33] 295 4.5 - 74.1 -
Proxyless-R [4] 320† 4.0 78 74.6 92.2
Proxyless GPU [4] 465† 7.1 124 75.1 -
Single Path One-Shot [7] 323 3.5 - 74.4 91.0
Single-Path NAS [27] 365 4.3 79 74.96 92.2
FairNAS-A (Ours) 388 4.6 104 75.34 92.4
FairNAS-B (Ours) 345 4.5 90 75.10 92.3
FairNAS-C (Ours) 321 4.4 83 74.69 92.1

Table 2. Comparison of mobile models on ImageNet. P : Params,
µ1, µ5: Top-1 and Top-5 accuracies, †: Based on its published
code. Mobile latencies (Lat) are measured on a Google Pixel 1
using a single large core of CPU.

4.3. Ablation Study

4.3.1 Expectation Fairness vs. Strict Fairness

For supernet training, we set up three control groups that
meet Expectation Fairness as our baselines. a) EF k = 6,
uniformly sampling one path and train k times, followed by
parameter update. b) EF k = 6, 1/6lr: same as the first
one except that the learning rate is scaled by 1

k . In practice,
we set k = 6 to make it comparable to FairNAS. c) EF
k = 1: an reimplementation of Single-Path One-Shot [7].
Other hyperparameters are kept the same. Note a), c) and
FairNAS all use the same lr.

We draw average training accuracies of one-shot models
over 120 epochs for these strategies compared with Fair-
NAS, shown at the top of Figure 1. Our supernet that ad-
heres to Strict Fairness steadily boosts the validation accu-
racy, which reaches up to 60% after 40 epochs. On the con-
trary, the first baseline EF has trouble stabilizing the train-
ing process. We suspect that the repeated k updates along a
single activated path could cause overfitting on a mini batch
of data. It pushes weights too far away so that oscillation is
incurred on the next activated path. To validate this hypoth-
esis, we inspect the second baseline, EF 1/6lr, in which the
learning rate is calibrated by scaling. It eliminates the os-
cillation but it demonstrates a quite slow learning speed. As
for EF k = 1, We notice that average accuracies have been
largely improved but they are still lower than FairNAS.

4.3.2 Comparisons of Searching Algorithms

For the second-stage, we adopt multi-objective optimization
where three objectives are considered: accuracies, multiply-
adds, and the number of parameters. Specifically, we apply
MoreMNAS with a minor modification in which PPO [24]
is utilized instead of REINFORCE [29].



We construct several comparison groups that cover main
searching algorithms: a) EA: NSGA-II with reinforced mu-
tation, b) random search, c) RL: MnasNet which uses PPO
with a mixed multi-objective reward [30]. The results are
shown in Figure 6, control groups generally align within
our Pareto front and are constricted within a narrow range,
affirming an excellent advantage in the MoreMNAS variant.
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Figure 6. Pareto front of the MoreMNAS variant (adopted) com-
pared with Top: NSGA2 (EA-like baseline) with RL mutator and
random search (random baseline), Bottom: MnasNet (RL base-
line). Each samples 1,088 models. The adopted MoreMNAS vari-
ant generally outperforms other mainstream searching methods.
Last generation elitists PG+1 are lined.

4.4. Kendall Rank Analysis

We run the search pipeline for 200 epochs with a popu-
lation size of 64, sampling 12,800 models in total. It takes
only 2 GPU days due to accelerated evaluation. Due to high
training cost, we sampled 13 models at approximately equal
distances on the Pareto front and trained them from scratch
to get the ranking, which is shown in Figure 8. We observe
that FairNAS supernet gives a highly relevant ranking while
Single-Path One-Shot [7] doesn’t. The training process of
sampled models is plotted in Figure 10 (see supplementary).

We also adopt Kendall Tau [11] for the ranking analy-
sis following a recent work [25] that evaluates NAS ap-
proaches. Kendall Tau (τ ) measures the ranking relation be-
tween one-shot models and fully trained ones. The range of
τ is from -1 to 1, meaning the rankings are totally reversed
or completely preserved, whereas 0 means there is no corre-
lation at all. Surprisingly, most weight-sharing approaches
behave incredibly poorly on this metric [18, 20, 25]. A
method based on incomplete training reaches an average
τ of 0.474 [36]. Instead, we hit a new high record of the
Kendall rank correlation coefficient τ = 0.9487. We show
our ranking comparison with baseline groups in Table 3.
In general, methods with EF have a better ranking than

Methods Fairness τ

One-Shot [2]† None 0
Uniform (k = 6, baseline) EF 0.4871
Uniform (k = 1, 1/6lr) EF 0.4871
SPOS [7] (k = 1)† EF 0.6153
FairNAS‡ SF 0.9487

Table 3. Ranking ability of methods satisfying Expected Strictness
vs. Strict Strictness. In total, 13 evenly-spaced models are fully
trained on ImageNet to obtain their ground-truth ranking order. †:
Reimplemented. ‡: With or without recalculating batch normaliza-
tion, τ holds the same. For EF methods, k iterations are performed
at each training step.

those without EF, while SF is the best of all, which dis-
closes the relevance of fairness to ranking in one-shot ap-
proaches.

Is recalibration for batch normalization a must? No-
tably, the statistics for Batch Normalization [10] must be
recalibrated in other approaches [2, 7] to boost their model
ranking performances. We compare the ranking of Fair-
NAS with and without this extra process. As Table 3 shows,
both cases have the same τ = 0.9487, which we attribute
to the proposed fairness mechanism. Thus, we can evalu-
ate the sampled architectures on the fly without the time-
consuming recalibration.

4.5. Discussion about the Supernet Accuracy gap

As discussed in Section 2.1, previous one-shot methods
[3, 2] have a large accuracy gap between the one-shot and
stand-alone models. We call this difference as supernet ac-
curacy gap, λ = |δoneshot− δstandalone|, where δoneshot is
the accuracy range of one-shot models, and δstandalone for
stand-alone models. Ideally, δoneshot can be obtained by
evaluating all paths from the supernet. However, it’s non-
trivial to calculate because the search space is enormous.
Instead, we can approximate δoneshot by covering a wide
range of models.

In practice, we randomly sample 1,000 models from our
supernet, then we evaluate these models directly on the Im-
ageNet validation set. The histogram of their top-1 accu-
racies are reported at the bottom of Figure 1, ranging from
0.666 to 0.696. This leads to our δoneshot = 0.03. By
contrast, the accuracies of sampled models from the One-
Shot [2] supernet trained on the CIFAR-10 dataset [12]
have a range of [0.3, 0.9], while stand-alone equivalents are
within [0.92, 0.945]. Thus, we have its δoneshot = 0.6 and
λ = 0.575. It was hypothesized that this abnormal accuracy
distribution is a result of learning only useful operations,
the removal of which causes a large drop in accuracy [2].
According to our experiments and analysis, we blame the
unfair training process for this gap. They may suffer from a
rich-get-richer phenomenon, as noted in [1].
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Figure 7. Architectures of FairNAS-A,B,C (from top to bottom). Ex Ky means an expansion rate of x and a kernel size of y for its
depthwise convolution. Grey thick lines refer to downsampling points. Dashed lines separate the stem and end layers from the backbone.
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Figure 8. Top-1 accuracies of 13 fully trained stand-alone mod-
els (ground-truth) vs. one-shot models. Exact same models are
used for both methods. FairNAS (SF) one-shot accuracies exhibit
higher relation to their ground-truth, than SPOS [7] (EF).

5. Why Does Single Path Training Work?

First of all, our supernet generates a relatively small
range of one-shot accuracies, from which we postulate that
choice blocks be quite alike in capacity. In fact, given an in-
put of a chickadee image, the choice blocks of the first layer
yield similar feature maps on the same channel, as shown in
Figure 2. But how much do they resemble each other? We
hereby involve the cosine similarity [19] to measure the dis-
tance among various feature vectors. It ranges from -1 (op-
posite) to 1 (identical), where 0 indicates no correlation. In
Figure 9, each 6× 6 symmetric matrix shows the distances
on the same channel from block to block, they are mainly
above 0.9 (very similar). Besides, we calculate the cross
channel similarities and put the results in Figure 14 and 12
(both in the supplementary), which indicate that cross chan-
nels are quite irrelevant.

In summary, the channel-wise feature maps generated
by our supernet come with high similarities. We con-
clude that this important characteristic significantly stabi-
lizes the whole training process. For layer l + 1, its input
are randomly from choice blocks in previous layer l. As dif-
ferent choices have highly similar channel-aligned features,
the random sampling constructs a mechanism mimicking
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Figure 9. Cross-block channel-wise cosine similarity matrix on
feature maps of 6 choice blocks in Layer 1. We observe that each
choice block learns very similar features on the same channel.

feature augmentation, which boosts the stable training of
the supernet. Moreover, this augmentation is however weak
and thus doesn’t alter the feature distribution too much,
therefore, recalibrating batch normalization is no longer re-
quired for evaluation.

6. Conclusion
In this work, we scrutinize neural architecture search

with a fairness perspective, especially for weight-sharing
approaches. We prove that unfairness inevitably incurs a
severely biased evaluation of one-shot model performance.
We propose several degrees of fairness enhancement to al-
leviate such neglected unfairness, among which Strict Fair-
ness (SF) works best. Our supernet trained under SF acts
as a performance evaluator. Besides, satisfying SF is also
memory friendly, there is only a single path trained at each
step. To the best of our knowledge, we are the first to give
a theoretical analysis of why single-path training is more
beneficial.

In principle, the fair supernet can be incorporated in
any NAS pipeline requiring an evaluator. Hence, a multi-



objective evolutionary searching backend is adopted to
demonstrate its effectiveness. After searching proxylessly
on ImageNet at cost of 12 GPU days, we harvest three state-
of-the-art models of different magnitudes nearby Pareto
Optimality. Future works remain as to study fairness in
more complex search spaces, e.g., full of dense connections,
and to design a fair approach to learn a robust prior for those
without an explicit predictor like DARTS.

References
[1] George Adam and Jonathan Lorraine. Understanding

Neural Architecture Search Techniques. arXiv preprint.
arXiv:1904.00438, 2019. 7

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc Le. Understanding and Simplifying
One-Shot Architecture Search. In International Conference
on Machine Learning, pages 549–558, 2018. 1, 2, 3, 4, 6, 7

[3] Andrew Brock, Theodore Lim, James M Ritchie, and Nick
Weston. SMASH: One-Shot Model Architecture Search
through HyperNetworks. In International Conference on
Learning Representations, 2018. 1, 2, 4, 7

[4] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Di-
rect Neural Architecture Search on Target Task and Hard-
ware. In International Conference on Learning Representa-
tions, 2019. 1, 3, 4, 5, 6

[5] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Hailong Ma.
Multi-Objective Reinforced Evolution in Mobile Neural Ar-
chitecture Search. arXiv preprint. arXiv:1901.01074, 2019.
5, 11

[6] Terrance DeVries and Graham W Taylor. Improved Reg-
ularization of Convolutional Neural Networks with Cutout.
arXiv preprint. arXiv:1708.04552, 2017. 6

[7] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single Path One-Shot
Neural Architecture Search with Uniform Sampling. arXiv
preprint. arXiv:1904.00420, 2019. 1, 2, 3, 4, 5, 6, 7, 8, 11

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term
Memory. Neural computation, 9(8):1735–1780, 1997. 2

[9] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-Excitation Net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7132–7141, 2018. 5

[10] Sergey Ioffe and Christian Szegedy. Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In International Conference on Machine
Learning, pages 448–456, 2015. 7

[11] Maurice G Kendall. A New Measure of Rank Correlation.
Biometrika, 30(1/2):81–93, 1938. 7

[12] Alex Krizhevsky, Geoffrey Hinton, et al. Learning Multi-
ple Layers of Features from Tiny Images. Technical report,
Citeseer, 2009. 2, 7

[13] Liam Li and Ameet Talwalkar. Random Search and Repro-
ducibility for Neural Architecture Search. Conference on
Uncertainty in Artificial Intelligence, 2019. 2

[14] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He,
Weiran Huang, Kechen Zhuang, and Zhenguo Li. Darts+:

Improved Differentiable Architecture Search with Early
Stopping. arXiv preprint arXiv:1909.06035, 2019. 2

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable Architecture Search. In International Confer-
ence on Learning Representations, 2019. 1, 2, 3, 4, 5, 6

[16] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gra-
dient Descent with Warm Restarts. In International Confer-
ence on Learning Representations, 2017. 6

[17] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,
Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf.
NSGA-NET: A Multi-Objective Genetic Algorithm for Neu-
ral Architecture Search. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 419–427,
2019. 1

[18] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-
Yan Liu. Neural Architecture Optimization. In Advances in
Neural Information Processing Systems, pages 7816–7827,
2018. 1, 7

[19] Hieu V Nguyen and Li Bai. Cosine Similarity Metric Learn-
ing for Face Verification. In Asian Conference on Computer
Vision, pages 709–720. Springer, 2010. 8

[20] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and
Jeff Dean. Efficient Neural Architecture Search via Parame-
ter Sharing. In International Conference on Machine Learn-
ing, 2018. 1, 2, 7

[21] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized Evolution for Image Classifier Architecture
Search. International Conference on Machine Learning, Au-
toML Workshop, 2018. 1

[22] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. ImageNet Large
Scale Visual Recognition Challenge. International Journal
of Computer Vision, 115(3):211–252, 2015. 5

[23] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
Residuals and Linear Bottlenecks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 4510–4520, 2018. 5, 6

[24] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal Policy Optimization Algo-
rithms. arXiv preprint. arXiv:1707.06347, 2017. 5, 6, 11

[25] Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat,
and Mathieu Salzmann. Evaluating the Search Phase of Neu-
ral Architecture Search. arXiv preprint. arXiv:1902.08142,
2019. 7

[26] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A Simple
Way to Prevent Neural Networks from Overfitting. The Jour-
nal of Machine Learning Research, 15(1):1929–1958, 2014.
6

[27] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dim-
itrios Lymberopoulos, Bodhi Priyantha, Jie Liu, and Di-
ana Marculescu. Single-Path NAS: Designing Hardware-
Efficient ConvNets in less than 4 Hours. arXiv preprint.
arXiv:1904.02877, 2019. 1, 4, 6

[28] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the Importance of Initialization and Momentum



in Deep Learning. In International Conference on Machine
Learning, pages 1139–1147, 2013. 6

[29] Richard S Sutton and Andrew G Barto. Reinforcement
Learning: An Introduction. MIT press, 2018. 6

[30] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
and Quoc V Le. MnasNet: Platform-Aware Neural Architec-
ture Search for Mobile. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2019. 1,
6, 7

[31] Mingxing Tan and Quoc V Le. EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks. In In-
ternational Conference on Machine Learning, 2019. 1

[32] Ian Tweddle. James Stirlings Methodus Differentialis: An
Annotated Translation of Stirlings Text. Springer Science &
Business Media, 2012. 4

[33] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. FBNet: Hardware-Aware Effi-
cient ConvNet Design via Differentiable Neural Architecture
Search. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019. 1, 4, 6

[34] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-
rakchi, Thomas Brox, and Frank Hutter. Understanding
and Robustifying Differentiable Architecture Search. arXiv
preprint arXiv:1909.09656, 2019. 2

[35] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond Empirical Risk Mini-
mization. In International Conference on Learning Repre-
sentations, 2018. 6

[36] Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang,
Jianzhuang Liu, and Qi Tian. Multinomial Distribution
Learning for Effective Neural Architecture Search. In In-
ternational Conference on Computer Vision, 2019. 7

[37] Barret Zoph and Quoc V Le. Neural Architecture Search
with Reinforcement Learning. In International Conference
on Learning Representations, 2017. 1

[38] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning Transferable Architectures for Scalable Im-
age Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, 2018.
1, 6



Algorithm 2 Speed up in parallel under some conditions.
Input:
initialize every θj,l in Θ(m,L).
for i = 1 to N do

for data, labels in D do
for l = 1 to L do
cl = an uniform index permutation for the choices
of layer l

end for
Clear gradients recorder for all parameters
∇θj,l = 0, j = 1, 2, ...,m, l = 1, 2, ..., L
for k = 1 to m (in parallel) do

Build modelk = (c1k , c2k , .., cLk
) from sampled

index
Calculate gradients for modelk based on Loss,
data, labels.
update θ(m,L).

end for
end for

end for

A. Algorithms

A.1. Paralleled Training of Supernet

Algorithm 1 (in main text) can reach at least the same
training efficiency as uniform sampling approach [7]. But
it usually demonstrates faster training speed in practice be-
cause the sampled mini-batch data are reused to perform BP
operations for m times, thus alleviating the data generation
overhead for the underlying data loader and fully utilizing the
power of GPU or TPU machines.

In fact, it can be further accelerated under some conditions
described by Algorithm 2 (supplementary), ideally linear to
the number of paralleled workers. When the whole supernet
needs to be explored like Figure 3 (in main text) and each
choice block within a layer has its own parameters, training
m models at each step can be absolutely decoupled into m
tasks so that both back-propagation and parameter update can
be run in parallel, i.e., synchronized update for parameters is
no longer needed. Most of the deep learning frameworks can
support paralleled training of such type.

A.2. Evolutionary Searching Pipeline

With our supernet fairly trained as a model evaluator,
we adopt an evolutionary-based algorithm for searching, de-
tailed in Algorithm 3. Generally, it is built on the ground of
MoreMNAS [5] by replacing its incomplete-training evalu-
ator with our fairly trained supernet. FairNAS supernet ex-
hibits tremendous speed-up in terms of GPU days by two or-
ders of magnitudes. We also use Proximal Policy Optimiza-
tion as the default reinforcing algorithm [24].

Algorithm 3 : Stage 2 - Search Strategy.
Input: Supernet SN , the number of generations G, vali-
dation dataset D
Output: A set of K individuals on the Pareto front.
Train supernet SN with Algorithm 1.
Uniform initialization for the populations P1 and Q1.
for i = 1 to G do
Ri = Pi ∪Qi
for all p ∈ Ri do

Evaluate model p with inherited weights from SN
on D

end for
F = non-dominated-sorting(Ri)
Pick N individuals to form Pi+1 by ranks and the
crowding distance.
M = tournament-selection(Pi+1)
Qi+1 = crossover(M) ∪ hierarchical-mutation(M)

end for
Select K evenly-spaced models from PG+1 to train

B. Experiment Details
B.1. Hyperparameters for MoreMNAS variant

We list the hyperparameters for the adopted MoreMNAS
[5] variant in Table 4. It has a population N of 64 models.
It also takes a hierarchical mutation strategy. Respectively,
prm, pre, ppr indicate probabilities for random mutation, re-
inforce mutation and prior regulator, where pre again is di-
vided into pK−M for roulette wheel selection, and pM for
reinforced controller.

Table 4. Hyperparameters for the whole pipeline.

ITEM VALUE ITEM VALUE

POPULATION N 64 MUTATION RATIO 0.8
prm 0.2 pre 0.65
ppr 0.15 pM 0.7
pK−M 0.3

B.2. Training of stand-alone models
We picked 13 models for full train whose one-shot accura-

cies are approximately evenly spaced, ranges in [0.641, 0.7].
They are trained with the exactly same hyperparameters as
the supernet. Their corresponding stand-alone accuracies are
within [0.692, 0.715]. Figure 10 plots the training process,
from which we observe the ranking of one-shot models are
generally maintained. The model-metas of these 13 models
are listed in Table 5. Besides, the mapping from basic ele-
ment of model-meta to a search operation is given in Table 6.

B.3. Evolution Process
FairNAS evolution process based on MoreMNAS variant

[5] is shown in Figure 11. At each generation, 64 models are



Table 5. Model-metas of stand-alone models.

IDX MODEL META

0 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
1 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
2 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0]
3 [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0]
4 [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0]
5 [0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0]
6 [0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 2, 0]
7 [0, 1, 0, 1, 1, 4, 1, 1, 1, 1, 1, 0, 0, 1, 2, 0]
8 [0, 1, 4, 1, 0, 3, 1, 1, 1, 1, 1, 1, 0, 2, 0, 0]
9 [0, 1, 0, 0, 1, 5, 1, 1, 0, 5, 1, 1, 0, 1, 2, 3]
10 [3, 1, 4, 1, 3, 4, 1, 4, 1, 3, 1, 1, 3, 1, 2, 0]
11 [0, 1, 4, 3, 1, 3, 1, 1, 1, 3, 4, 1, 3, 1, 2, 3]
12 [1, 5, 3, 2, 1, 4, 3, 4, 1, 5, 1, 1, 3, 5, 5, 3]

Table 6. Mapping between model-meta index and operations.

MODEL META IDX KERNEL EXPANSION RATE

0 3 3
1 5 3
2 7 3
3 3 6
4 5 6
5 7 6
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Figure 10. Train and validation accuracies (ground truth) of all 13
stand-alone models when being fully trained with the same hyper-
parameters. Lines are labelled with corresponding one-shot accu-
racies (predicted) sorted in descending order (as reflected by color
gradient).

evaluated by our fair supernet, after 200 generations, the evo-
lution converges, the Pareto-front is shown in bright yellow,
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Figure 11. FairNAS evolution process of 200 generations, with
64 models sampled in each generation. Number of parameters,
multiply-adds are charted with top-1 accuracies on the ImageNet
validation set.

each dot represents a candidate network.

C. Single-Path Training Analysis
We have shown that cross-block features in the same chan-

nel are quite alike. Here we give all channel results in Fig-
ure 13. How about cross-channel features? As a result, cross-
channel feature maps of the same block are nearly irrelevant,
see each 24 × 24 matrix in Figure 12. The same result holds
also for cross-channel features of different blocks, see Fig-
ure 14.
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Figure 12. Cross-channel cosine similarity matrix on feature maps
of each choice block in Layer 1. Different channels for the same
block learn very diverse features.
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Figure 13. Channel-wise cosine distance on feature maps of 6 choice blocks in Layer 1. We observe that each choice block learns very
similar features.
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Figure 14. Cross-channel cosine similarity matrix on feature maps from choice block 0 to other blocks in Layer 1. Different channels of
various blocks learn very diverse features.


